Hydrodynamic shock wave studies within a kinetic Monte Carlo approach

نویسندگان

  • Irina Sagert
  • Wolfgang Bauer
  • Dirk Colbry
  • Jim Howell
  • Rodney Pickett
  • Alec Staber
  • Terrance Strother
چکیده

a r t i c l e i n f o a b s t r a c t We introduce a massively parallelized test-particle based kinetic Monte Carlo code that is capable of modeling the phase space evolution of an arbitrarily sized system that is free to move in and out of the continuum limit. Our code combines advantages of the DSMC and the Point of Closest Approach techniques for solving the collision integral. With that, it achieves high spatial accuracy in simulations of large particle systems while maintaining computational feasibility. Using particle mean free paths which are small with respect to the characteristic length scale of the simulated system, we reproduce hydrodynamic behavior. To demonstrate that our code can retrieve continuum solutions, we perform a test-suite of classic hydrodynamic shock problems consisting of the Sod, the Noh, and the Sedov tests. We find that the results of our simulations which apply millions of test-particles match the analytic solutions well. In addition, we take advantage of the ability of kinetic codes to describe matter out of the continuum regime when applying large particle mean free paths. With that, we study and compare the evolution of shock waves in the hydrodynamic limit and in a regime which is not reachable by hydrodynamic codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building a Hydrodynamics Code with Kinetic Theory

We report on the development of a test-particle based kinetic Monte Carlo code for large systems and its application to simulate matter in the continuum regime. Our code combines advantages of the Direct Simulation Monte Carlo and the Point-of-Closest-Approach methods to solve the collision integral of the Boltzmann equation. With that, we achieve a high spatial accuracy in simulations while ma...

متن کامل

Hydrodynamic and Monte Carlo Simulation of an Electron Shock Wave in a 1-pm n+-n-n+ Diode

Hydrodynamic model simulations of a steady-state electron shock wave in a 1-pm Si semiconductor device at 77 K are compared with a Monte Carlo simulation of the Boltzmann equation using the DAMOCLES program. Excellent agreement between the two different methods for simulating the electron shock wave can be obtained by adjusting the amount of heat conduction in the hydrodynamic model.

متن کامل

Particle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges

In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-M...

متن کامل

The Propagation of Shock Waves in a

The shock wave structure in a moderately dense gas is studied by numerically solving the one-dimensional Enskog kinetic equation. The numerical method is based on a combination of a nite difference scheme for the streaming term and a Monte Carlo quadrature technique to evaluate the collision integral. The obtained shock prooles are compared to the results of Navier-Stokes theory and to molecula...

متن کامل

Kinetic Phenomena in Spherical Expanding Flows of Binary Gas Mixtures

Diffusion and kinetic effects in the spherical expanding  ows of argon–helium mixtures have been studied using the direct simulation Monte Carlo technique at the Knudsen numbers from 0.0015 to 0.03 and pressure ratios from 100 to 10,000. Similarity analysis was used to analyze the  ow structure in supersonic  ow region, spherical shock wave, and subsonic area behind it. Both kinetic and diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 266  شماره 

صفحات  -

تاریخ انتشار 2014